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Id Id:= Lcs 1:= Lcs Lcs:=

Ldl 1:= Ldl Ldl:=

Rdl 1:= Rdl Rdl:=
Rcs 1:= Rcs Rcs:=

d_dtvds 1:= d_dtvds d_dtvds:=

d_dtvgs 1:= d_dtvgs d_dtvgs:=

d_dtvgd 1:= d_dtvgd d_dtvgd:=

d_dtig 1:= d_dtig d_dtig:=

d_dtics 1:= d_dtics d_dtics:=

d_dtid 1:= d_dtid d_dtid:=

The Loop and Node Equations for the above model are:

Vgs Vgd Vds+= Ig Id+ Ics+ 0=

STABILITY CRITERIA FOR  FET SWITCHING 
Vds 1:= Vds Vds:= Cds 1:= Cds Cds:=http://www.leapcad.com/Other_Tech/FET_Stability_Analysis.mcd

The behavior of ideal electrical circuit elements and the great majority of engineering applications 
can be described as Linear Systems.  One important aspect of linear system behavior is stability.  A 
system will be unstable if it has any roots in the right half plane. The Routh-Hurwitz criteria for the 
stability of linear systems states that the necessary condition for asymptotic stability is that both the 
coefficients of the characteristic polynomial and the Hurwitz determinants be positive. 

This criterion can be applied to a MOSFET driving a resistive load, which because of its 100 MHz 
bandwidth and high input impedance is susceptible to instability.  Oscillations can occur when the gate 
capacitance and circuit board trace inductance form a tens of MHz tank circuit which is not sufficiently 
damped.  What is the criterion for damping?  The answer involves 10 variables with very complex 
relationships.  Our goal is to gain insight into these involved relationships.  We will develop a tool
for this purpose which we will call stability sensitivity.

An analysis of the small signal AC model for a FET is shown below.  Since the power supply is 
ideally a short for AC,  the circuit below applies to both high and low side drivers.  We shall consider the 
high side driver case. Rg and Lg are the circuit gate resistance and inductance, respectively.  

For the case where a large RFI cap (which behaves as an inductance at high frequencies, i.e. a 
component of Lg below) shunts the gate to load ground, then Rcs and Lcs are the sum of the source and 
load resistance and inductance and Rdl and Ldl are simply the FET drain resistance and inductance. For 
the case where the low end of the RFI cap goes to the source however, then Rcs = 0 and Rdl and Ldl are 
the sum of the drain plus load resistance and inductance.   

Vgs 1:= Vgs Vgs:= Cgs 1:= Cgs Cgs:=

Lg 1:= Lg Lg:=
Vgd 1:= Vgd Vgd:=

Rg 1:= Rg Rg:=
Ig 1:= Ig Ig:=

Cgd 1:= Cgd Cgd:=

Ics 1:= Ics Ics:= gm 1:= gm gm:=

Id 1:=

Tom
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The above relations were used to substitute for Ics, Vgd and their derivatives, d_dt, in the expressions below.

Denote derivatives by d_dt.
Given

Vgs Ig Rg⋅ Lg d_dtig⋅+ Lcs d_dtig d_dtid+( )⋅+ Rcs Ig Id+( )⋅+=

Ig Cgs− d_dtvgs⋅ Cgd d_dtvgs d_dtvds−( )⋅−=

Vds Id Rdl⋅ Ldl d_dtid⋅+ Lcs d_dtig d_dtid+( )⋅+ Rcs Ig Id+( )⋅+=

Cgd d_dtvgs d_dtvds−( )⋅ gm Vgs⋅− Cds d_dtvds⋅− Id− 0=
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Solve the above for derivative terms, then solve first order simultaneous equations with constant coefficients.

Find d_dtid d_dtig, d_dtvgs, d_dtvds,( )

Lcs Vds⋅ Lcs Id⋅ Rdl⋅− Lg Vds⋅ Lg Id⋅ Rdl⋅− Lg Rcs⋅ Ig⋅− Lg Rcs⋅ Id⋅− Vgs Lcs⋅−+ Ig Rg⋅ Lcs⋅+
Lcs Ldl⋅ Lg Ldl⋅+ Lg Lcs⋅+

Ig− Rg⋅ Lcs⋅ Ldl Vgs⋅+ Lcs Id⋅ Rdl⋅ Lcs Vds⋅−+ Vgs Lcs⋅ Ldl Ig⋅ Rg⋅− Rcs Ig⋅ Ldl⋅− Rcs Id⋅ Ldl⋅−+
Lcs Ldl⋅ Lg Ldl⋅+ Lg Lcs⋅+

Ig− Cgd⋅ gm Vgs⋅ Cgd⋅− Cds Ig⋅− Id Cgd⋅−
Cgs Cgd⋅ Cds Cgs⋅+ Cds Cgd⋅+

Cgs− gm⋅ Vgs⋅ Cgs Id⋅− Ig Cgd⋅− gm Vgs⋅ Cgd⋅− Id Cgd⋅−
Cgs Cgd⋅ Cds Cgs⋅+ Cds Cgd⋅+























→

By inspection, the terms in the above expression can then be grouped as follows to form a matrix equation:

d_dtid

d_dtig

d_dtvgs

d_dtvds















A

Id

Ig

Vgs

Vds













⋅= Where A is the matrix below.

A

Lg Lcs+( )− Rdl⋅ Lg Rcs⋅−
Ldl Lg⋅ Lcs Ldl⋅+ Lcs Lg⋅+

Rdl Lcs⋅ Ldl Rcs⋅−
Ldl Lg⋅ Lcs Ldl⋅+ Lcs Lg⋅+

Cgd−
Cds Cgs⋅ Cds Cgd⋅+ Cgd Cgs⋅+

Cgs Cgd+( )−
Cds Cgs⋅ Cds Cgd⋅+ Cgd Cgs⋅+( )

Lcs Rg⋅ Lg Rcs⋅−
Ldl Lg⋅ Lcs Ldl⋅+ Lcs Lg⋅+

Ldl Lcs+( )− Rg⋅ Ldl Rcs⋅−
Ldl Lg⋅ Lcs Ldl⋅+ Lcs Lg⋅+

Cgd Cds+( )−
Cds Cgs⋅ Cds Cgd⋅+ Cgd Cgs⋅+

Cgd−
Cds Cgs⋅ Cds Cgd⋅+ Cgd Cgs⋅+( )

Lcs−
Ldl Lg⋅ Lcs Ldl⋅+ Lcs Lg⋅+( )

Ldl Lcs+
Ldl Lg⋅ Lcs Ldl⋅+ Lcs Lg⋅+

Cgd− gm⋅
Cds Cgs⋅ Cds Cgd⋅+ Cgd Cgs⋅+

Cgs Cgd+( )− gm⋅
Cds Cgs⋅ Cds Cgd⋅+ Cgd Cgs⋅+

Lg Lcs+
Ldl Lg⋅ Lcs Ldl⋅+ Lcs Lg⋅+

Lcs−
Ldl Lg⋅ Lcs Ldl⋅+ Lcs Lg⋅+( )

0

0























:=

The expressions of A can be compacted by defining the terms in the denominators as Leff and Ceff

Leff Ldl Lg⋅ Lcs Ldl⋅+ Lcs Lg⋅+:= Ceff Cds Cgs⋅ Cds Cgd⋅+ Cgd Cgs⋅+:=
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A

Lg Lcs+( )− Rdl⋅ Lg Rcs⋅−

Leff
2

Rdl Lcs⋅ Ldl Rcs⋅−

Leff
2

Cgd−

Ceff
2

Cgs Cgd+( )−

Ceff
2

Lcs Rg⋅ Lg Rcs⋅−

Leff
2

Ldl Lcs+( )− Rg⋅ Ldl Rcs⋅−

Leff
2

Cgd Cds+( )−

Ceff
2

Cgd−

Ceff
2

Lcs−

Leff
2

Ldl Lcs+

Leff
2

Cgd− gm⋅

Ceff
2

Cgs Cgd+( )− gm⋅

Ceff
2

Lg Lcs+

Leff
2

Lcs−

Leff
2

0

0



























:=



9/26/2009

ESTIMATES OF COD CIRCUIT PARAMETERSMOTO MTP3055VL DATA SHEET:

Cgs is voltage independent.   The voltage dependence of Cgs and 
Cds flattens out when  Vgs > 3V and Vds > 6V , respectively.
Hot bulb 10 ohm, I limit ~ 4A, gm ~ 2 S

WITH GATE RFI CAP TO GND,  WHAT ARE THE VALUES OF THE FET AND CIRCUIT PARAMETERS?

Then a4 = Leff2 x Ceff2. 
Coefficients a3 and a2 are found similarly and are given below.

Ldl Lg⋅ Lcs Ldl⋅+ Lcs Lg⋅+( ) Cds Cgs⋅ Cds Cgd⋅+ Cgd Cgs⋅+( )⋅

The first 9 terms of the above expression for |A-λI|  form the coefficient a4 of 

λ4.  By inspection we see that they are product terms of Leff2 and Ceff2 , i..e.

ao 1 Rcs gm⋅+=Gain Factor:

a1 Rcs Rdl+( ) Cds⋅ Lcs gm⋅+ Rdl Rg+( ) Cgd⋅+ Rg Rcs+( ) Cgs⋅+ Rdl Rg⋅ Rcs Rg⋅+( ) gm⋅ Cgd+ Rdl Rcs⋅ Cgd⋅ gm⋅+=

The above equation is 10 pages wide.  It is of the form:
This 4th degree equation does not have a closed form solution.  We will deal with it by numeric means. 
The equation can be compacted by gathering like terms and extracting common terns, Leff and Ceff. 
After dropping the common denominator, we copy over the last coefficients a1 and ao.  They are:

a4 λ
4

⋅ a3λ
3

+ a2 λ
2

⋅+ a1 λ⋅+ ao+ 0=

A λ I⋅− collect λ,
Cds Cgd⋅ Lg⋅ Lcs⋅ Cds Cgd⋅ Lg⋅ Ldl⋅+ Cgs Cgd⋅ Lg⋅ Lcs⋅+ Cgs Cgd⋅ Lg⋅ Ldl⋅+ Cgs Cgd⋅ Lcs⋅ Ldl⋅+ Cds Cgd⋅ Lcs⋅ Ldl⋅+ Cds Cgs⋅ Lg⋅ Ldl⋅+ Cds Cgs⋅ Lcs⋅ Ldl⋅+ CdsCgs⋅+

Lcs Ldl⋅ Lg Ldl⋅+ Lg Lcs⋅+( ) Cgs Cgd⋅ Cds Cgs⋅+ Cds Cgd⋅+( )⋅
→

I identity 4( ):=

The above set of simultaneous differential equations is 
linear with constant coefficients. These equations have solutions of 
the form C exp(λt) and they can be solved algebraically by finding 
the solution to the characteristic equation,  which is the determinant 
of "A - λI", where I is the 4 x 4 Identity matrix.  

Evaluate the determinant and collect the terms in λ below.
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Lcs Ls 10 nH⋅+:=
Vt 1.6 volt⋅:= Rds 1Ω⋅:= Rload 10Ω⋅:= Rdl Rds:=

Rcs Rload:=

Leff Ldl Lg⋅ Lcs Ldl⋅+ Lcs Lg⋅+:= Ceff Cds Cgs⋅ Cds Cgd⋅+ Cgd Cgs⋅+:=

a4 Ceff
2

Leff
2⋅ sec

4−⋅:=

a3 Rdl Lg⋅ Cds⋅ Cgd⋅ Ldl Lcs⋅ gm⋅ Cgd⋅+ Ldl gm⋅ Lg⋅ Cgd⋅+ Lcs Rdl⋅ Cds⋅ Cgd⋅+ Cgs Cds⋅ Ldl⋅ Rcs⋅+ Cgs Cds⋅ Lcs⋅ Rdl⋅+ Cgs Ldl⋅ Rcs⋅ Cgd⋅+ Cgs Cds⋅ Rg⋅ Lcs⋅+ Ldl Cds⋅ Rcs⋅ Cgd⋅+ Cgs+(:=

a2 Ldl Cds⋅ Lcs Cgs⋅+ Lg Cgs⋅+ Cgs Rdl⋅ Rcs⋅ Cgd⋅+ Cgs Rcs⋅ Rg⋅ Cgd⋅+ Lcs Cds⋅+ Cgs Cds⋅ Rcs⋅ Rg⋅+ Cgs Cds⋅ Rdl⋅ Rg⋅+ Cgs Rdl⋅ Rg⋅ Cgd⋅+ Rdl Cds⋅ Rg⋅ Cgd⋅+ Rdl Lg⋅ gm⋅ Cgd⋅+ +(:=

a1 Rcs Cds⋅ Lcs gm⋅+ Rdl Cgd⋅+ Rg Cgs⋅+ Rdl Rg⋅ gm⋅ Cgd⋅+ Rg Cgd⋅+ Cds Rdl⋅+ Rcs Cgs⋅+ Rdl Rcs⋅ Cgd⋅ gm⋅+ Rcs Rg⋅ gm⋅ Cgd⋅+( ) sec
1−⋅:=

ao 1 Rcs gm⋅+:= a4 4.619 10
34−×= a3 7.667 10

25−×= a2 3.028 10
16−×= a1 6.01 10

8−×= ao 21=

Ciss 410 pF⋅:= Coss 114 pF⋅:= L mm( ) 1 nH⋅ mm⋅:= Cg 1 Ciss⋅:=
Crss 21 pF⋅:= Qt 8.1 nC⋅:= Cgs 0.8 Ciss⋅ 100 pF⋅+:= Cgd 0.2 Ciss⋅ 10 pF⋅+:=
Ld 3.5 nH⋅:= Ls 7.5 nH⋅:= Cds 1 Coss⋅ 100 pF⋅+:= Rg 6.5Ω⋅:=
gFS 8.8 S⋅:= Rdson 0.12Ω⋅:= gm 2 S⋅:= Lg 30 nH⋅:=
tr 85 nsec⋅:= tf 43 nsec⋅:= Ldl Ld 50 nH⋅+:=
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GRAPHICAL DISPLAY AND VERIFICATION OF THE REAL PART OF ROOTS

rr r( ) r 10
6−:=q 1 4..:=ff λ( ) a4 λ−( )4⋅ a3 λ−( )3⋅+ a2 λ−( )2

⋅+ a1 λ−⋅+ ao+:=

fsolution Re 1− solution⋅ 10
6+( )( ):=

CHARACTERISTICS OF SOLUTIONS:
Because the coefficients of the characteristic equation, a1 through a4, are so small (on 

the order of {nF x nH}2 ), the roots, which we denote as σ + jω, must be very large (in the 
negative direction) so that they sum up to - ao,  where ao ~ 317.  Root locus is not very helpful 
as an analysis technique because of the huge difference in the size of the roots (109) versus the 
gain term, ao.

The solution is unstable because the real parts of the last two roots are positive.  For 
analysis of stability, we are most interested in the behavior of the last two complex roots, which 
have the positive real part.  The jω portion is larger than the real part.  These roots have both 
upper+ and lower- branches.  The natural frequency of the instability is equal to 44 MHz. 

PLOT ON REAL AXIS, R
From the plot of the curve on the left below, we see that three of the solutions are 

bunched together into what appears to be a single square at the origin. To spread out this tight 
range of values, we wish to display the curve as a log-log plot. This requires positive x and y 
values.  We need to flip both the x and y axes. Redefine λ -> -λ,  ff = |f(λ)|,  multiply the 
"solution" by -1 and then plot the solution zeros as boxes.   To see the real part, r, (j ω = 0) of 
the positive unstable solution, shift the plot right by 1 10^6.  This gives the original and shifted 
log-log plots below.   

feff 3.433 10
7× Hz=

freq 4.463− 10
7×=freq

Im solution
3( )

2 π⋅
:=

solution

1.164− 10
9×

4.968− 10
8×

3.971 10
5× 2.804i 10

8×−

3.971 10
5× 2.804i 10

8×+

















=feff
1

2 π⋅
1

Leff Ceff⋅
⋅:=

The natural frequency jω = ω = ω = ω =  2 π π π π freq 

f λ( ) a4 λ
4

⋅ a3 λ
3

⋅+ a2 λ
2

⋅+ a1 λ⋅+ ao+:=
solution polyroots v( ):=

v ao a1 a2 a3 a4( )T:=Find the roots, λ, numerically, for the coefficients ax of characteristic 

equation, f(λ) = 0,  given the particular set of parameters given above:

Solution for the Given Parameters
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1 .10
9

5 .10
8

0

50

50
Negative Left Half of Solution Plane

Real Axis

f r( )

0

r solutionq,
1 .10

5
1 .10

6
1 .10

7
1 .10

8
1 .10

9
1 .10

10

10

100
Shift,Flip XY Log-Log:Negative Left Half

Real Axis

ff rr r( )( )

1.1

r fsolutionq,

f(λ3) ~ 0: f solution
3( ) 1.386 10

9−× 1.537i 10
10−×+=

Because of the complexity of the dependency and the inter-relation of the roots on the circuit 
parameters,  we gain very little insight about how the stability is affected by the variation of circuit 
parameters.                   We will try the classic textbook stability analysis.
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For the parametric conditions given above, D3 is negative and the circuit is unstable.

We are no better off than before.  We still need some strategy to relate the circuit variables

D4 1.27− 10
48−×=D3 6.05− 10

50−×=D2 2.044 10
40−×=

Calculate the Hurwitz Determinants.  For stability they must be positive.

D4

a3

a4

0

0

a1

a2

a3

a4

0

ao

a1

a2

0

0

0

ao















:=D3

a3

a4

0

a1

a2

a3

0

ao

a1













:=D2
a3

a4

a1

a2









:=

The Hurwitz Determinants, D2, D3, D4, for a fourth order polynomial are:

Polynomials whose zeros have negative real parts are Hurwitz polynomials.  The 
Hurwitz test for stability is that the Hurwitz determinants, Dx, be greater than zero.  

Hurwitz Stability Criterion

There is a change of sign:  Therefore there are roots in the right hand plane. 
The response function is unstable, i.e. not bounded in time.

RouthArray

4.619 10
34−×

7.667 10
25−×

2.666 10
16−×

2.96− 10
10−×

21

3.028 10
16−×

6.01 10
8−×

21

0

0

21

0

0

0

0





















=RouthArray

a4

a3

c1

d1

e1

a2

a1

c2

0

0

ao

0

0

0

0

















:=

e1
c2 ao⋅

c2
:=d1

c1 a1⋅ a3 c2⋅−

c1
:=c2

a3 ao⋅

a3
:=c1

a3 a2⋅ a4 a1⋅−

a3
:=

Routh's Stability Criterion : the number of real positive roots is equal
to the number of changes in sign in column 1 of the  Routh Array.
Calculate the Routh parameters. See for example, D'azzo and Houpis, 
"Feedback Control System Analysis and Synthesis", pg.121.

Classical Analysis:The Routh Stability Criterion
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We are no better off than before.  We still need some strategy to relate the circuit variables
to the onset of instability. By trying different parameter values we find that stability is lost 
only when d1 and D3 go negative. Expanding d1 & D3 reveals that they are equivalent and equal 

to a3 a2⋅ a1⋅ a3
2

ao⋅− a4 a1
2⋅− .This tells us that instability occurs when 

 a3
2

ao⋅ a4 a1
2⋅+ a3 a2⋅ a1⋅>

METHODOLOGY: This gives us a criterion for instability, but we still need a methodology to gain insight 
into how the relationships among the circuit parameters affect stability.  For this purpose, we will develop 
and use the concept of stability sensitivity, which is the rate of change of D3 with respect to the circuit 
parameters.   We can then rank the parameters and observe how the direction and magnitude of this 
sensitivity change with the highest ranking factor.
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Lg 30 n⋅:=

tr 85 nsec⋅:= tf 43 nsec⋅:= Ldl 50 n⋅ Ld+:= Lcs Ls 10 n⋅+:=
Vt 1.6 volt⋅:= Rds 1:= Rload 10:= Rdl Rds:=

 Rcs Rload:=

Evaluate Stability as function of the 10 variables Cgs, Cgd, Cds, Rg, Lg, Rdl, Ldl, Rcs, Lcs and gm.

a4 Cgs Cgd, Cds, Lg, Ldl, Lcs,( ) Ldl Lg⋅ Lcs Ldl⋅+ Lcs Lg⋅+( ) Cds Cgs⋅ Cds Cgd⋅+ Cgd Cgs⋅+( )⋅:=

a3 Cgs Cgd, Cds, Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm,( ) Rdl Lg⋅ Cds⋅ Cgd⋅ Ldl Lcs⋅ gm⋅ Cgd⋅+ Ldl gm⋅ Lg⋅ Cgd⋅+ Lcs Rdl⋅ Cds⋅ Cgd⋅+ Cgs Cds⋅ Ldl⋅ Rcs⋅+ Cgs Cds⋅ Lcs⋅ Rdl⋅+ Cgs Ldl⋅ Rcs⋅ Cgd⋅+(:=

a2 Cgs Cgd, Cds, Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm,( ) Ldl Cds⋅ Lcs Cgs⋅+ Lg Cgs⋅+ Cgs Rdl⋅ Rcs⋅ Cgd⋅+ Cgs Rcs⋅ Rg⋅ Cgd⋅+ Lcs Cds⋅+ Cgs Cds⋅ Rcs⋅ Rg⋅+ Cgs Cds⋅ Rdl⋅ Rg⋅+ Cgs Rdl⋅ Rg⋅+(:=

a1 Cgs Cgd, Cds, Rg, Lg, Rdl, Rcs, Lcs, gm,( ) Rcs Cds⋅ Lcs gm⋅+ Rdl Cgd⋅+ Rg Cgs⋅+ Rdl Rg⋅ gm⋅ Cgd⋅+ Rg Cgd⋅+ Cds Rdl⋅+ Rcs Cgs⋅+ Rdl Rcs⋅ Cgd⋅ gm⋅+ Rcs Rg⋅ gm⋅ Cgd⋅+( ):=

ao Rcs gm,( ) 1 Rcs gm⋅+:= a4 Cgs Cgd, Cds, Lg, Ldl, Lcs,( ) 4.619 10
34−×=

Define Hurwitz Criteria, d3, as a function of Cgs, Cgd, Cds, Rg, Lg, Rdl, Ldl, Rcs, Lcs and gm. 

D3 a3 a2⋅ a1⋅ a3
2

ao⋅− a4 a1
2⋅−=

d3 Cgs Cgd, Cds, Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm,( ) a3 Cgs Cgd, Cds, Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm,( ) a2 Cgs Cgd, Cds, Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm,( )⋅ a1 Cgs Cgd, Cds, Rg, Lg, Rdl, Rcs,(⋅

a3 Cgs Cgd, Cds, Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm,( )
2− ao Rcs gm,( )⋅ a4 Cgs Cgd, Cds, Lg, Ldl, Lcs,( ) a1 Cgs Cgd, Cds, Rg, Lg, Rdl, Rcs,(−+

:=

Check Results: d3 vs D3: d3 Cgs Cgd, Cds, Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm,( ) 6.05− 10
50−×= D3 6.05− 10

50−×=

STRATEGY: DETERMINE THE  DIRECTION AND MAGNITUDE OF 
SENSITIVITY TO INSTABILITY AS FUNCTION OF PARAMETERS

Define Dimensionless Parameters (F, H, Ohm, Siemens)

p 10
12−:= n 10

9−:=

DIMENSIONLESS VALUES OF THE FET AND CIRCUIT PARAMETERS

Hot bulb 10 ohm, I limit ~ 4A, gm ~ 2

MOTO MTP3055VL DATA SHEET: ESTIMATES OF COD CIRCUIT PARAMETERS

Ciss 410 p⋅:= Coss 114 p⋅:= L mm( ) 1 n⋅ mm⋅:= Cg 1 Ciss⋅:=
Crss 21 p⋅:= Qt 8.1 nC⋅:= Cgs 0.8 Ciss⋅ 100 p⋅+:= Cgd 0.2 Ciss⋅ 10 p⋅+:=
Ld 3.5 n⋅:= Ls 7.5 n⋅:= Cds 1 Coss⋅ 100 p⋅+:= Rg 6.5:=
gFS 8.8:= Rdson 0.12:= gm 2:=
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Roots of Characteristic Equation

vv ao Rcs gm,( ) a1 Cgs Cgd, Cds, Rg, Lg, Ldl, Rcs, Lcs, gm,( ) a2 Cgs Cgd, Cds, Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm,( ) a3 Cgs Cgd, Cds, Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm,( ) a4 Cgs Cgd, Cds, Lg,((:=

roots polyroots vv( ):= freq
Im roots

3( )
2 π⋅

:= freq 4.406 10
7×=
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STABILITY SENSITIVITY ANALYSIS @Estimated Ckt Parameters
Sensitivity Ranking @ECP: Cgd, Cds, Cgs, Lg, Lcs, Ldl, gm, Rdl, Rg, Rcs. 
From the plot below, the only parameters that always damp* are Rg & Rdl.
Sensitivity sign*, magnitude & ranking changes with the parameter values.
In particular, the sign of Lg varies with the magnitude of other parameters.
Rg & Rdl are < other sensitivities, but dominate because others flip signs.
The Rg effect  is very similar to that of Rdl. The greatest change is for Cgd. 
The effect of Cgd is a factor of 1010 or more larger than Rg, Rdl, gm & Rcs. 
The size or the effect of a sensitivity decreases with its relative magnitude.
Lcs is critical in affecting the natural frequency, band width.

|RANKING|, MAGNITUDES AND SIGNS OF STABILITY SENSITIVITIES

Cgd
d3 Cgs Cgd, Cds, Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm,( )d

d
5.517 10

38−×=

Cds
d3 Cgs Cgd, Cds, Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm,( )d

d
8.379− 10

39−×=

Cgs
d3 Cgs Cgd, Cds, Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm,( )d

d
2.896− 10

39−×=

Lg
d3 Cgs Cgd, Cds, Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm,( )d

d
1.275− 10

40−×=

Lcs
d3 Cgs Cgd, Cds, Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm,( )d

d
1.7 10

40−×=

Ldl
d3 Cgs Cgd, Cds, Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm,( )d

d
2.905− 10

41−×=

gm
d3 Cgs Cgd, Cds, Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm,( )d

d
2.844 10

49−×=

Rg
d3 Cgs Cgd, Cds, Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm,( )d

d
9.778 10

49−×=

Rdl
d3 Cgs Cgd, Cds, Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm,( )d

d
1.007 10

48−×=
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Rcs
d3 Cgs Cgd, Cds, Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm,( )d

d
2.346− 10

49−×=

Define a Stability Function, DRL,  as a function of some +/- Sensitivity pairs

DRL Rg Rdl, Lg, Rcs, Lcs, gm,( ) d3 Cgs Cgd, Cds, Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm,( )( ) 10
47⋅:=



9/26/2009

DSD
i j, if DRL Rg i 0.1⋅, Lg, j, Lcs, gm,( ) 0> 1, 1−,( ):=

Stability, Log Lg (0.1nH) vs Rg

D

Stability, Rcs vs Rdl (0.1)

DSD

Stable Region is at bottom and Rdl > 8 ΩΩΩΩ UnStable Region center. USR shrinks w Rg 

DD
i j, if DRL Rg 0.5 i⋅, LG

j
n⋅, Rcs, Lcs, gm,( ) 0> 1, 1−,( ):= DG

i j, if DRL Rg Rdl, Lg, j, Lcs, i 0.1⋅,( ) 0> 1, 1−,( ):=

DD
10 20, 1−= DD

2 2, 1= DG
10 20, 1−= DG

10 5, 1= DG
35 30, 1=

Stability Contour, Log Lg (0.1nH) vs Rdl (0.5)

DD

Gain Stability Contour, Rcs vs gm (0.1)

DG
UnStable Region is at bottom left. Lg is 10X UnStable Region center. USR shrinks w Rg 

( )( )

X/Y STABILITY CONTOURS FOR +/- SENSITIVITY PAIRS
Plot the Stability Contour Pairs of Log Lg vs Rg/Rdl, Rcs vs Rdl and Rcs vs Log gm 

Lmin 1:= Lmax 10
4:= gmin 0.1:= gmax 10:= N 40:= i 1 N..:= j 1 N..:= RG

i
i:= RD

i
i 0.5⋅:=

rl ln
Lmax

Lmin








:= rgm ln
gmax

gmin








:=
LG

j
Lmin e

j
rl

N
⋅

⋅:= GM
i

gmin e

i
rgm

N
⋅

⋅:=

Stable Region is at bottom and Rg > 30 ΩΩΩΩ Stable Region is at bottom and right
D

i j, if DRL RG
i

Rdl, LG
j
n⋅, Rcs, Lcs, gm,( ) 0> 1, 1−,( ):=
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GD
i j, if DRL i 0.5 j⋅, Lg 10⋅, Rcs, Lcs, gm,( ) 0> 1, 1−,( ):= DL

i j, if DRL Rg Rdl, LG
j
n⋅, Rcs, Lcs, GM

i
,( ) 0> 1, 1−,( ):=

GD
10 20, 1= GD

2 2, 1−= DL
10 20, 1−= DL

10 5, 1=
Stability Contour, Rdl (0.5) vs Rg

GD

Gain Stability, Log Lg (0.1nH) vs Log gm (0.1)

DL
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DIRECTION OF INSTABILITY CHANGES WITH CAPACITANCE
Below we see that changing the capacitances singlely, eg. only Cgs,  changes the sign of sensitivities.

x 0.1 0.6, 10..:= Vary Cgs with factor x: Cgs x( ) x Cgs⋅:=

We find that with the exception of Rg and Rdl, which always damp, the sign of d3 and the signs of all the 
other sensitivities flip with decreased Cgs and also Cds. For decreased Cgs or Cds,  increasing these 
factors increases stability.  The Cgd capacitances has the opposite effect.  Also the effects of the C(s) on 
the Sensitivities of Lcs, Rg, Rdl, gm are very similar and differ only in magnitude. 

Increasing the parameters with sensitivities 
in the top half of the plot damps oscillations.
Increasing Rg or Rdl moves all the curves up.

List in order of above relative rankings.
For a common plot, multiply by factor 
(1/|sensirvity|)  to scale plot close to 1.  

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

Sign changes (Not Rg/Rdl) Sens'ty vs Cgs

d
3

d3 Cgs x( ) Cgd, Cds, Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm,( ) 10
47.5⋅

Cgd
d3 Cgs x( ) Cgd, Cds, Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm,( ) 10

37⋅d

d

Cds
d3 Cgs x( ) Cgd, Cds, Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm,( ) 10

38⋅d

d

Lg
d3 Cgs x( ) Cgd, Cds, Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm,( ) 10

39⋅d

d

Lcs
d3 Cgs x( ) Cgd, Cds, Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm,( ) 10

39⋅d

d

Ldl
d3 Cgs x( ) Cgd, Cds, Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm,( ) 10

40⋅d

d

gm
d3 Cgs x( ) Cgd, Cds, Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm,( ) 10

47⋅d

d

Rg
d3 Cgs x( ) Cgd, Cds, Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm,( ) 10

48⋅d

d

Rdl
d3 Cgs x( ) Cgd, Cds, Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm,( ) 10

48⋅d

d
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0.1 1 10
1

0.8

0.6

Multiple of Cgs

Rdld

Rcs
d3 Cgs x( ) Cgd, Cds, Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm,( ) 10

48⋅d

d

x
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DIRECTION OF INSTABILITY CHANGES WITH Rg

Vary Rg by a factor x:

x 0.1 0.6, 10..:= Rg x( ) x 5⋅:=

Except for Rdl, the sign of All of the sensitivites flip with Rg and similarly with Rdl.

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

Sign changes Sens'ty vs Rg

d
3

d3 Cgs Cgd, Cds, Rg x( ), Lg, Rdl, Ldl, Rcs, Lcs, gm,( ) 10
47.5⋅

Cgs
d3 Cgs Cgd, Cds, Rg x( ), Lg, Rdl, Ldl, Rcs, Lcs, gm,( ) 10

37⋅d

d

Cgd
d3 Cgs Cgd, Cds, Rg x( ), Lg, Rdl, Ldl, Rcs, Lcs, gm,( ) 10

37⋅d

d

Cds
d3 Cgs Cgd, Cds, Rg x( ), Lg, Rdl, Ldl, Rcs, Lcs, gm,( ) 10

38⋅d

d

Lg
d3 Cgs Cgd, Cds, Rg x( ), Lg, Rdl, Ldl, Rcs, Lcs, gm,( ) 10

39⋅d

d

Lcs
d3 Cgs Cgd, Cds, Rg x( ), Lg, Rdl, Ldl, Rcs, Lcs, gm,( ) 10

39⋅d

d

Ldl
d3 Cgs Cgd, Cds, Rg x( ), Lg, Rdl, Ldl, Rcs, Lcs, gm,( ) 10

40⋅d

d

gm
d3 Cgs Cgd, Cds, Rg x( ), Lg, Rdl, Ldl, Rcs, Lcs, gm,( ) 10

47⋅d

d

Rdl
d3 Cgs Cgd, Cds, Rg x( ), Lg, Rdl, Ldl, Rcs, Lcs, gm,( ) 10

48⋅d

d

Rcs
d3 Cgs Cgd, Cds, Rg x( ), Lg, Rdl, Ldl, Rcs, Lcs, gm,( ) 10

48⋅d

d
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0.1 1 10
1

0.8

Multiple of Rg

Rcsd

x
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CHANGE OF MAGNITUDE OF SENSITIVITY vs. CAPACITANCES
Observe the effect of changing all three of the capacitances collectively.  Only the magnitude changes.

Vary Cgs, Cgd, Cds with factor x: Cgs x( ) x Cgs⋅:= Cgd x( ) x Cgd⋅:= Cds x( ) x Cds⋅:=

0.1 1 10
1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

Sign changes (Not Rg/Rdl) Sens'ty vs Cs

Multiple of C's

d
3

d3 Cgs x( ) Cgd x( ), Cds x( ), Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm,( ) 10
47.5⋅

Lg
d3 Cgs x( ) Cgd x( ), Cds x( ), Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm,( ) 10

39⋅d

d

Lcs
d3 Cgs x( ) Cgd x( ), Cds x( ), Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm,( ) 10

39⋅d

d

Ldl
d3 Cgs x( ) Cgd x( ), Cds x( ), Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm,( ) 10

40⋅d

d

gm
d3 Cgs x( ) Cgd x( ), Cds x( ), Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm,( ) 10

47⋅d

d

Rg
d3 Cgs x( ) Cgd x( ), Cds x( ), Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm,( ) 10

48⋅d

d

Rdl
d3 Cgs x( ) Cgd x( ), Cds x( ), Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm,( ) 10

48⋅d

d

Rcs
d3 Cgs x( ) Cgd x( ), Cds x( ), Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm,( ) 10

48⋅d

d

x
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PLOT LOCII OF INSTABILITY
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PLOT LOCII OF INSTABILITY

CREATE THE STABILITY FUNCTION,  
US
Find the Gate Inductance, Lg,  at the transition to
UnStable Operation for Rg from 1 to 20 ohm and 
for Cgs 1 to 3 x Cgs for given values of Rcs & Lcs.

UG

F 1←

d 0 0.1+←

Lgg 10
L←

rgg rg← 0.01+

D3 d3 Cgs Cgd, Cds, rgg, Lgg n⋅, d, Ldl, Rcs, Lcs, gm,( )←

D3 d3 Cgs Cgd, Cds, rgg, Lgg n⋅, d, Ldl, Rcs, Lcs, gm,( )←

break d 100>( )if

d d 1+←

0 10
30

D3⋅>while

S
rg L, d←

S
71 L, rg←

F 0←

F 1=( ) d⋅ 0.1=if

rg 1 70..∈for

L 1 4..∈for

S

:=

Parameter Approximations for Rdl and Rg for Stable Operation

RdlUS Rg Lg,( ) 1 6.1 log Lg( )⋅+
Rg 1.6⋅
log Lg( )

−:=

RgUS Rdl Lg,( )
1 6.1 log Lg( )⋅+ Rdl−( ) log Lg( )⋅

1.6
:=
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UGG UG:= rg 1 70..:=

d3 Cgs Cgd, Cds, 2, 10 n⋅, 6, Ldl, Rcs, Lcs, gm,( ) 9.064 10
49−×=

d3 Cgs Cgd, Cds, 2, 10 n⋅, 2, Ldl, Rcs, Lcs, gm,( ) 2.821− 10
49−×=

Stable Region is at top. Lg decreases Region of Stability

0 5 10 15 20 25 30
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
Stability Rdl vs Rg. Parameter Log Lg nH

Rg (Ohms)

R
d

l (
O

h
m

s)

UGG
3〈 〉( )

rg

UGG
2〈 〉( )

rg

RdlUS rg 100,( )

UGG
1〈 〉( )

rg

RdlUS rg 10,( )

rg

nn 1 4..:= Rslope
nn

UGG nn〈 〉( )
1

UGG nn〈 〉( )
71

nn⋅:= Rslope

1.22

1.613

1.41

1.567













=

nH 10
9−

H⋅≡ nsec 10
9−

sec⋅≡ sq 1≡ nC 10
9−

C⋅≡
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Does increasing Rg ever increase instability?

Given
Rg

d3 Cgs Cgd, Cds, Rg, Lg, Rdl, Ldl, Rcs, Lcs, gm,( )d

d









10
50⋅








1−<

Cgs 10
10−> Cgd 10

10−> Cds 10
10−> Lg 10

8−> Rcs 0> Lcs 10
8−> gm 0.1>

AA Find Cgs Cgd, Cds, Lg, Lcs, Rcs, gm,( ):=

AAT 1.389− 10
9−× 10 10

11−× 2.14 10
10−× 3 10

8−× 1.75 10
8−× 10 2( )=

Rg
d3 AA

1
AA

2
, AA

3
, Rg, AA

4
, Rdl, Ldl, AA

5
, AA

6
, AA

7
,( )d

d









5.166 10
24−×=
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CgsLg⋅ Lcs⋅
λ

4
⋅

Lcs Rg⋅ Cgd⋅ Cgs⋅ Rdl Lcs⋅ Cgd⋅ Cgs⋅+ Lg Rcs⋅ Cgd⋅ Cgs⋅+ Ldl Rg⋅ Cgd⋅ Cgs⋅+ Lg Rdl⋅ Cgd⋅ Cgs⋅+ Lg Ldl⋅ gm⋅ Cgd⋅+ Lg Lcs⋅ gm⋅ Cgd⋅+ Cds Rdl⋅ Lcs⋅ Cgd⋅+ Cds Cgs⋅ Rcs⋅ Ldl⋅+
+
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CgsLdl⋅ Rg⋅ Cgd⋅ Cgs Lcs⋅ Rdl⋅ Cgd⋅+ Cgs Cds⋅ Rdl⋅ Lg⋅+ Cgs Lg⋅ Rcs⋅ Cgd⋅+ Cgs Cds⋅ Ldl⋅ Rg⋅+ Lg Cds⋅ Rcs⋅ Cgd⋅+ Rg Lcs⋅ Cgd⋅ Cds⋅+ Lcs gm⋅ Lg⋅ Cgd⋅+ Cgs Rdl⋅ Lg⋅ Cgd⋅+ Cgs Cds⋅ Lg⋅ Rcs⋅+

Ldl Cgd⋅ Rg Lcs⋅ gm⋅ Cgd⋅+ Cgs Cds⋅ Rdl⋅ Rcs⋅+ Lcs Rdl⋅ gm⋅ Cgd⋅+ Rdl Cds⋅ Rcs⋅ Cgd⋅+ Rg Ldl⋅ gm⋅ Cgd⋅+ Ldl Rcs⋅ Cgd⋅ gm⋅+ Lg Cgd⋅+ Rcs Cds⋅ Rg⋅ Cgd⋅+ Lg Rcs⋅ Cgd⋅ gm⋅+ ) sec
2−⋅
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Cgd Cgs Cds⋅ Rg⋅ Lcs⋅+ Ldl Cds⋅ Rcs⋅ Cgd⋅+ Cgs Ldl⋅ Rg⋅ Cgd⋅+ Cgs Lcs⋅ Rdl⋅ Cgd⋅+ Cgs Cds⋅ Rdl⋅ Lg⋅+ Cgs Lg⋅ Rcs⋅ Cgd⋅+ Cgs Cds⋅ Ldl⋅ Rg⋅+ Lg Cds⋅ Rcs⋅ Cgd⋅+ Rg Lcs⋅ Cgd⋅ Cds⋅+ Lcs gm⋅+

Rg Cgd⋅ Rdl Cds⋅ Rg⋅ Cgd⋅+ Rdl Lg⋅ gm⋅ Cgd⋅+ Ldl Cgd⋅+ Rg Lcs⋅ gm⋅ Cgd⋅+ Cgs Cds⋅ Rdl⋅ Rcs⋅+ Lcs Rdl⋅ gm⋅ Cgd⋅+ Rdl Cds⋅ Rcs⋅ Cgd⋅+ Rg Ldl⋅ gm⋅ Cgd⋅+ Ldl Rcs⋅ Cgd⋅ gm⋅+ Lg Cgd⋅+ +

Lcs, gm, )

Rcs Lcs, gm, )
2

...



9/26/2009

Lg Ldl, Lcs, ) )T
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Ldl Ldl Lcs⋅ gm⋅ Cgd⋅+ Rcs Ldl⋅ Cgd⋅ Cgs⋅+ Cds Cgs⋅ Lg⋅ Rcs⋅+ Cds Lg⋅ Rdl⋅ Cgd⋅+ Cds Ldl⋅ Rg⋅ Cgd⋅+ Cds Cgs⋅ Rdl⋅ Lcs⋅+ Cds Cgs⋅ Lg⋅ Rdl⋅+ Cds Lg⋅ Rcs⋅ Cgd⋅+ Cds Lcs⋅ Rg⋅ Cgd⋅+ CdsCgs⋅+
Lcs Ldl⋅ Lg Ldl⋅+ Lg Lcs⋅+( ) Cgs Cgd⋅ Cds Cgs⋅+ Cds Cgd⋅+( )⋅
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Rcs Cgs Rg⋅ Lcs⋅ Cgd⋅+ Ldl Cds⋅ Rg⋅ Cgd⋅+ ) sec
3−⋅
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gm Lg⋅ Cgd⋅ Cgs Rdl⋅ Lg⋅ Cgd⋅+ Cgs Cds⋅ Lg⋅ Rcs⋅+ Cgs Rg⋅ Lcs⋅ Cgd⋅+ Ldl Cds⋅ Rg⋅ Cgd⋅+ )

Rcs Cds⋅ Rg⋅ Cgd⋅ Lg Rcs⋅ Cgd⋅ gm⋅+ )
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CgsLcs⋅ Rg⋅ Cds Rcs⋅ Ldl⋅ Cgd⋅+ Cds Cgs⋅ Ldl⋅ Rg⋅+
λ

3
⋅

Cds Rcs⋅ Rg⋅ Cgd⋅ Cgs Lg⋅+ Cds Lcs⋅+ Cds Ldl⋅+ Cds Cgs⋅ Rdl⋅ Rg⋅+ Lg Cgd⋅+ Ldl Cgd⋅+ Rdl Rg⋅ Cgd⋅ Cgs⋅+ Cgs Lcs⋅+ Cds Cgs⋅ ⋅+
+
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Rdl Rcs⋅ Rcs Rg⋅ Cgd⋅ Cgs⋅+ Lg Rcs⋅ gm⋅ Cgd⋅+ Rdl Lcs⋅ gm⋅ Cgd⋅+ Lcs Rg⋅ gm⋅ Cgd⋅+ Cds Cgs⋅ Rcs⋅ Rg⋅+ Ldl Rg⋅ gm⋅ Cgd⋅+ Rcs Ldl⋅ gm⋅ Cgd⋅+ Lg Rdl⋅ gm⋅ Cgd⋅+ Rdl Cgs⋅ Rcs⋅ Cgd⋅+ Cds+
Lcs Ldl⋅ Lg Ldl⋅+ Lg Lcs⋅+( ) Cgs Cgd⋅ Cds Cgs⋅+ Cds Cgd⋅+( )⋅
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CdsRdl⋅ Rg⋅ Cgd⋅ Cds Rdl⋅ Rcs⋅ Cgd⋅+
λ

2
⋅

Rdl Cgd⋅ Cds Rdl⋅+ Rcs Cgs⋅+ Rdl Rg⋅ gm⋅ Cgd⋅+ Rg Cgd⋅+ Rdl Rcs⋅ gm⋅ Cgd⋅+ Rcs Rg⋅ gm⋅ Cgd⋅+ Lcs gm⋅+ Rcs Cds⋅+ Rg Cgs⋅+
Lcs Ldl⋅ Lg Ldl⋅+ Lg Lcs⋅+( ) Cgs Cgd⋅ Cds Cgs⋅+ Cds Cgd⋅+( )⋅

λ⋅+
Lcs Ldl⋅(

+
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1 Rcs gm⋅+
Lg Ldl⋅+ Lg Lcs⋅+ ) Cgs Cgd⋅ Cds Cgs⋅+ Cds Cgd⋅+( )⋅


