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Abstract - Many common inductive loads, in particular, passengr car, engine control,
electromechanical linear actuators, are magneticatlsaturated. Experimentally, it is found
that the “inductance” of these actuators decreasespproximately linearly with increasing
load current. Our goal is to characterize the satuation inductance behavior of these
actuators, within a few percent accuracy, using theninimum number of load
characterization parameters. The fall current satuated inductance of these loads can be
compactly modeled with linear dynamic inductance.Compact models for extremes of
operation and criteria for applicability of the models are developed. Using current/time
shifting, the model accuracy and accommodation ofornplexity can be increased. The
increased accuracy of load characterization can bexploited for the reduction of silicon
area and associated cost of the semiconductor indue load drivers.
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[. INTRODUCTION

These Inductance Saturation Models were develap&tilitate the assessment of an
engine controller power FET’s safe operating aB®@A) margin. The minimum number of
model parameters was essential for ease of usac@egtability by our automotive customers.
Assuring the reliability of a power device in anlutctive switching application requires some
determination that the junction peak transient terajure during turnoff is less than some
critical value. The thermal time constant of theTh& on the order of the falltime of the
inductance. Thus, the junction peak transient teatpee is critically dependent on the rate of
falloff of the peak power pulse during the firstfiat the inductive turnoff. For the saturated
inductors we evaluated, static inductance predictanrealistic fall current curve, with a di/dt
that can differ from the actual rate by a factottwée. The error in estimation of the peak
transient temperature rise, for the drivers wewsatald, based on the static inductance model, is
typically +30%, but can range from about -10 to %40The goal is to exploit the compact
model for driver silicon area and its associatest ceduction.

[Il. COMPACT DYNAMIC INDUCTANCE SATURATION MODELS

We will consider four models of “effective” inductee: Conventional static, Linear
Saturation, Bi-effective, and Bilinear Saturatitve will look at the limitations of the Linear
Model and ways to extend its applicability to caseextreme saturation. It will be shown that
the applicability of the linear model is approxielgtdetermined by the value of an energy ratio,
Nem. This energy ratio decreases as the low curtaiit bf the fall current versus time
increases. Saturation of our inductors ranged avactor of three in relative energy content,
Nem.

Magnetic saturation of an automotive inductor @sult from a number of factors. For
example, a minimum cost (maximum performance) daesigy specify the minimum amount of
magnetic material (minimal mass) or an inductivedlonay be subjected to fault condition, such
as voltage doubling during automotive jump-start.

Figures 1 and 2 depict “saturation” for two autoiv@electromechanical actuators
measured at 16V: a reverse lockout solenoid awnelarfjector, respectively. The straight line in
each plot is the least squares fit, linear regoestsne to the high current regiofihe plots
reveal that inductance (i.e. dynamic inductance) isot constant,but that the peak current
value (right edge of plots) is typically 90% leban the low current value. (Note that the normal
direction of falloff time, that is, left to righis reversed in these plots. The corresponding fall
current - time plot normally starts with the peakrent on the left, at time zero, and with
increasing time, then decays toward the right.)
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Fig. 1. Reverse lockout solenoid inductantg). Fig. 2. Fuel injector inductancA(i).



A. Conventional or Static Inductance - Limitations

A fundamental definition of conventional or statiductance is the ratio of magnetic
total flux linkage ®, to current (i.e., L i) [1]. During saturation at high current, the
incrementalincrease of flux decreases and consequently|uked current ratio, or inductance,
decreases. To better quantify this behavior, wedhice a quantity called dynamic inductance
[2,3], symbolized ag\, which we define as thdifferential change of flux with current (i.e)\ =
d d/di). For an electromechanical system, dynamicatahce is a function of clamp voltage,
peak current and the components of the analogsediia, plunger velocity, friction, spring
constant, wire distribution flux, differential peeability (dB/dH), etc.

The induced voltage (emf) of an actuator with pemmoving in the x direction is found
from the time rate of change of flux (i.e., emfdP(x,i)/dt). Applying this to our definition
of static inductance, for the case of saturatioreggemf = Ldi/dt +0 ®/0x * dx/dt. For
dynamic inductance @b; = A di and thus emf A di/dt. By definition, dynamic inductance is
directly observable from the emf and di/dt, whiletis inductance for saturation has the velocity
dependent (back emf) terdnd,/ox * dx/dt.

B. Linear Saturation Model — Inductance

We will uselinear saturation as a first order empirically basel model for moderate
saturation of any inductor. We observe that thieffabf the average current with time is
monotonic. Thus, there is a one-to-one corresparebatween falloff current and time. From
the previous plots, we discover that flux saturatd actuators that ateeavilysaturated is also
approximately linear with current in the high cumreegion at the right. We use these two
observations to construct a first order empiricabel of saturated dynamic inductance,
represented a&(i) = Ao — k i, whereN\o is the dynamic inductance at zero current (lovwent
“tail” inductance) and k is the constant slope e€¢rasing dynamic inductance with current.
This also meets our requirement for a model wighrthnimum number of parameters. From this
model, the peak current (minimum inductance) séturand-point/\j, is equal to\o — K Ipk,
where Ipk is the peak current. For heavy saturasfanagnetic materialg\,. approaches its
fully saturated dynamic inductance as a lower lifiihe nomenclature we use is summarized
near the end of this paper.)

Let’'s make some rough generalizations to exploedbtthavior of dynamic inductance.
For an unsaturated magnetic core, the changeofsfith current is constant, and in this case,
A reduces to the static inductance value, L. Forgtats in general, the average value of the
actual dynamic inductance with respect to the emdpo/\o + Api)/2, is roughly equal to the
(effective) static inductance. For heavy linedusgtion, such as in automotive actuators, the
value ofA\o is roughly about twice as large as the effedidee second paragraph below) static
inductance.

1.) Derivation of Fall Current Equationgm = 0.5: A voltage clamp is commonly used
with integrated circuit inductive driver applicat®[7]. We will use the typical application
circuit in Figure 3 to characterize the fall belmavof an inductive load. When the switch is
turned off, the inductor rings the Vds voltage aite fixed clamp voltage, Vglsn, to keep the
initial current constant at Ipk. We will refer toeise current, voltage, and resistance variables as
“clamp variables.” The solid curved linegdf in Figure 4 shows data for the fall current of a
saturated inductor, an automotive PWM solenoidoaf. 1

Theeffectiveinductance, Leffective, has been defined as #itecshductance that
matches an amount of fall energy,, Equal to thatlissipated in the voltage clanfpe., fall time



integral of VdsiampX icoil). The straight solid line in Figure 4 si®the current predicted from
the effective inductance model. For this inductoed and our other saturated samples, the static
model is clearly amiss. Typically for our saturasagnples, thetatic model has an error of

Actual fall current, I§, for an actuator is poorly modeled by a constant
inductance, Ly (black), but accurately by dynamic inductance noée
eithertm or Em (see beloy andMathcac file models.
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Fig. 3. Characterization circuit. Fig. 4. PWM solenoid fall current.

~30%, both at the point of maximum fall currentiddonand for the fall time.
The loop equation for the linear saturation dynaimiltictance fall current model is:

ﬂ — VBat _Vds:lamp - Rseries Ci (t) (_’]_)
dt Ao -k Ci(t)

This is a nonlinear equation that is integrable[4ftegrating, rearranging, and solving for the
current gives a solution with the general form #t{\o - A(t))/k, whereA(t) is the dynamic
inductance. However\(t) is given in the terms of the Lambert W funct{®h This exact linear
solution with the Lambert W function is not veryistactory. The solution does not give a good
match to the empirical fall current data (it isgar than the data at high currents), the Lambert W
function does not permit explicit solution for tite two /Ao and k parameters and the numerical
solution is often physically unrealistic.

We need a mapping function to accommodate smalimearities of inductance implicit
in the actuator fall current data and yet provideael current with linear inductance.

A first order approximation to the Lambert W fumctiis a power law function with
exponent less than 1. The fall current can thusppeoximated by the power function expression
Ipk [1-(t/trn)"]. This provides an exact match to the peak otk and to the current fall time,
tran. The value of this new parameter, n, can be fdiyndemanding a match either to the
solenoid’s dissipation energy, Emggh or to some high current point at an associated tm
(nm). See Appendix for the expressions for n. Thisay function always gives a physically
realistic solution. The resulting model currentsofsn in Fig. 4) are Hy(t) and Ifn(t),
respectively.

The resulting simple power law currenfad, provides a better match for the actual fall
current data. This power function manifests a ge¢anductance that is slightly nonlinear with
current and it is complementary to the Lambert fiamc i.e., its current at high current is less
than the empirical data.



We can remedy the defects of the above exact Laifbéunction solution. We demand
a realistic fall current solution, exactly linearinductance (with parametet® and k), which
satisfies the loop equation, and matches the tiallecdata exactly for at least three points.

We will use the power function to bootstraghe desired solution by substituting, for i(t)
just in the Rseries i(t) term in the linear diffietial loop equation. The power law expression
makes the above linear inductance differential leqpation integrable into a form that allows an
algebraic solution. This yields the self-consistagebraic solution for the dynamic linear
inductance fall current in terms of characterizapparameteréo and k, given by:

Ao = A(No,k,t 1)

2 k
ANOK,t ey 1) = \//\o -2k D[/\o Ipk - Ipk2 + VoG ,t):| Ot ®

1|t
o 4
1+n(tfaﬂ} “

(We will use ty later as a variable in the bilinear model for mowenplex saturation situations.)
This time domain equation has the same genenal &srthe Lambert W solution and also
as our saturation model, i A¢ —AN\)/K. (See Figs. 7 and 8.)

Vbzr(t fall 1) =Vgat _Vdsclamp —Rseriedpk| 1-

2.) Find Parameters - Three-Point Match (Ipk,dr En, ta): Given the Ipk, 4y, and the
clamp variables, we can find the value’af either by matching a high current point of ingtre
Im, Or by matching the fall energy,Edissipated in the clammiving the valueg\oi, andAogm,
respectively. Analogous to Leffective, but withra@ter degree of current matching accuracy,
Nognm is the effective dynamic linear inductance.

The iy equation can be solved directly #80 in terms of a current match point, Bnd its
associated timegt It is convenient to match the current at some@ermined fixed point
ratiometric to the peak current. Select the pEiot70 x Ipk) which tends to give the best match
to the mid-high current region. Then the requudlath point is just the timey,tfor the current to
reach 0.70 x Ipk. This solution féxo, designated a&oym, is shown in the Appendix. This
solution typically has a fall energy that is witlGfo of the measured clamp energy, E

The value of\ogr, can be found by matching the energy calculateah fio to the
measured valueyE This can be done with a Solver (Excel, Matheam| others) or by tweaking
the value of\oy, to match the energy, as shown in the followingageaph. Mathcad is the
easiest way to implement this Solver. This Mathgextedure is illustrated in the Appendix.

Let’s look at an alternative to a Solver. The vadidoy, can be used as an initial point
for an energy corrected approximatiomNoz, call it AOgm-tme ThenAogm-1m can be found by
taking differentials of the theoretical stored gyefsee the paragraph after next) with respect to
No. This gives an approximate value faye, based oM\oy, that is equal té\oy, — 0.85 x 6(k
- Em) /Ipk?, where Ey is the fall energy calculated from the integraV@f* i A(AOun, kOum, tai, 1)
over ty. The calculation foAOgn.tmiS shown in the Appendix. An associated tweakaddey of
K, K(AOgm-m tran) (refer to the Appendix), then needs to be catedla

The match from\ogm-tm t0 AOgnm is generally within 5%. If g, = 0.5, a match within a
few tenths of a percent can be obtained with arskderation, using the first value Abgm.im



and its associated value of k and fall energy. émahstrated by the plot of the automotive
PWM solenoid current at 16V €n = 0.5) in Figure 4, both the central current paintl energy
methods, give a good current matchy, #nd I, respectively, to the overall current data.
Typically, if n> 0.5, half of the high current model points are with2% of the current data.

The power supply adds energy in addition to thatest in the inductor during the fall
time. The stored energy is typically about 85% @f & can be shown that the stored theoretical
linear saturation energy is A®gm Ipk® - ; kem Ipk>. The effect of the two opposing terms is, for
heavy saturation, that the energy, Eacreases more like linearly, rather than asstheare of
Ipk, as in the case of static inductance.

C. Linear Saturation Limited Model, Peak Currei@tero Inductance Solutiofiozk Nem~ 0.5

Consider the case of a heavily linearly saturate@006/\0 decrease) inductor. A
hypotheticalinear saturation limit is when the high current satwldateluctance decreases to
zero. Without any knowledge afit, given just this hypothetical zero inductance c¢ood, the
measured energy, and the clamp conditions, ancawsalve the Esw energy equation Aar.
The value of k is then equal £@,,/Ipk, and the fall time, tfall, is estimated from the
expression for tfalhcodes ShOWnN in the Appendix.

[ll. LIMITATIONS, n gm <0.5: FULLY SATURATED REGION AND COMPLEXITY

A. Extreme Saturation, Energy Ratigrx 0.5

The Appendix shows thatk, equals the energy ratio 1/(Ipk @y tras /Em — 1). This
energy ratio is a rough measure of the degreeatdif@ion causes the relative stored energy to
be reduced). (The area under thg turve in Figure 4 is measured to be one-third the
rectangular Ipk x¢{; area and thus it has g.value of 1/2. This corresponds to a moderate to
heavy degree of saturation.)

We now consider the linear heavy saturation liffiite energy ratio, n, is the exponent of
the falloff of the power law approximation to thetwator falloff current. As the energy ratio n
decreases, the “tailing” of the falloff current wiime increases. It has been found that the
linear saturation model will overestimate heavysstion, and show increasing error, as the
inductor’s energy ratio drops below 0.5. As ndtetbw, that is often the result of additional
phenomena occurring, making the fall current bedrawviore complex than that of the simple
linear model.

B. Deviations from the Linear Modek#x< 0.5

Figure 5 is a plot of the saturation of a skip tsbdlenoid at both the nominal 16V (dotted
lines, it = 0.5) and extended double battery 26V (soliddjme,, = 0.35). The lowest solid and
dotted lines are regression lines to the extendgddurrent region. These lines transition, or
cross at about 0.8A. This point is denotedyas (This point is somewhat arbitrary. For the case
of our sample automotive actuators, this transitiorent level roughly corresponds to the peak
current level at a 10V supply voltage.) The coroegping time is#an. The upper lines ak(i)
from our model. The plots show that by extendirggliigh current region, the overall saturation
increasingly deviates from our linear model assiygply voltage is increased beyond the normal
operating range.

Figure 5 shows that “nonlinear” dynamic inductameesus current saturation at low
currents increases the overall slope relative @dhigh current region and causes the model
inductance at the peak currefify, for a least squares fit linear regression linéye negative.
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Fig. 5. Skip shift solenoid @26V inductanté). Fig. 6. A/C clutch relay indactce A(i).

Negative inductance is physically unrealistic\k is less than zero, the linear solutioy,is

not valid and does not concurrently match the meakent and the central current/energy. This
imposes a maximum value 80 of 2 ta {VdSclamp— Veat + Rseries Ipk [n/(1+n)]}/1pk.

The value of\x, or Ao versus the above maximum, should be checkeddatity if n is close

to, or less than, one half.

C. Complexity: Power Law Fit — Three Point Matagbi,It, or En, tia

Relays display two distinct magnetic states, charaed by two distinct dynamic
inductance slopes. Their dual slope behavior reguadditional model parameters and thus is
more complex to model. Figure 6 is a “saturatiolot pf an automotive air conditioner clutch
relay at 16V (an = 0.30). The broken and lowest lines are theaessions to the relay’s low
current (open magnetic path) and linear high curf@osed magnetic path) portions,
respectively, and the top line is the linear analytodel dynamic inductance, which
overestimates nonlinear “saturation.”

There are some nonlinear, slow decay, cases inwvthe&nonlinear power law function
Ipk [1-(t/tran)"] can provide a better fit than the Three-PointdainSaturation Model. The power
law function is not an explicit model for variatiohinductance with saturation, it is a
convenient general curve fit. For a quantitatigenparison, the time averaged dynamic
“inductance” for If, is (VdSiamp- Veat+ RS Ipk rn/2) tf {Ipk Nem (2 - nem)}

IV. BI-EFFECTIVE INDUCTANCE TEST STANDARD

A. Extracting b and L

The representative extended voltage inductancisaurrent plot of Figure 5 and also
the Figure 6 relay plot suggest that the solenordenit can be decomposed into two regions: a
peak current region and a low, or tail, curreniorg. The electrical dynamics in these regions
are roughly simulated with a parallel pair of tleeiss combination of a resistance and an
inductance. This pair consists of a small (peakeru) inductance with a fall time equal tant
(O Lipk/Ripk) and a larger inductance with a (tailing) fall @) Liai/Reai). The faster discharge
Lip/Ripk leg requires a power diode in series with it tacklreverse current flowing through it
after its fall time, ¢an, from the Lai/Rii leg.



Define the bi-effective pair inductance as the ttdace pair that matches the total
energy dissipated in the voltage clamp by the aotwand also matches the fall energy dissipated
in the clamp by the actuator during the fall frdme peak current to the current @l

There are four unknowns, (a pair of resistancesagoair of inductances) for which we
establish the four requirements: the paralleleetsédtotal) resistances must equal Rseries, the
total fall energy must equakf=the fall time for the (peak region) current thgbwp/Ripx must
equal the timeyt, and the FET dissipation energy from the parallBl pair from the peak
current to ., must equal that of the actuator. (If we get atsoh such that the fall time
associated with /R Is much larger than that of the actuator, we &édarbitrary constraint
that Lgjis < 3.5 X I—lpk-)

Figure 7 shows a plot of the skip shifeHfective fall current, les. (FOr reasons, which
will be made clear below, we label the transientpla(@tran @S hask@tnask)

V. BILINEAR SATURATION MODEL

A. Current/Time Shift Partitioned Linearization

The bi-effective static inductances are a muctebetodel than just the effective
inductance. However, the bi-effective characteriraparameters are somewhat arbitrary and
they are still an approximation to, and not a st@imodel for, magnetic saturation. Figures 5
and 6 reveal that an accurate and realistic chexraation of the over-voltage solenoid and relay
requires the separation and extraction of the nahviersus the full saturation and the open
magnetic path versus the closed magnetic pathnegrespectively. We wish to partition the
inductance curve in Figure 5 into two regions: gtereded high current fully saturated region
and a low to nominal current region.

1.) Extended High Current Fully Saturated Regidn:easy way to do this is to null out,
or mask out, the low to nominal current region byrent level shifting. Because our model is
linear with respect to current, we can subtraairaent level, }Lasx from our current data, apply
our linear model, and then add this current leaeklafter we calculate the solution parameters
for the shifted curreni(/Ao, ko, tai, t). For example, we take the current data shiowsgure 7
and subtract anphsklevel of 0.8A. We choose 0.8A because it roughlyegponds to the
transition to the linear portion of the high curtrearsus time plot. The peak current is now 0.8A
less and the fall time, or time for the currengtoto the new zero level, is now the time
corresponding to the,hskdata point. We designate this time agd

Based on this new truncated peak current (Ipis)l the truncated high current fully
saturated region energy (or match current) andfawme, we can calculate the shifted
dynamic inductance parametéysy and k, for this new high current data from the and k
equations in the Appendix. (In general, to compenga the reduced “peak” current, the initial
series resistance must be increased by a factpki§fpk — Imasy) to maintain the original un-
shifted voltage drop for calculation &by and k. If there is appreciable voltage variation, the
average values ofg¢; and Vdgamp restricted to the high current region should dlsased.) For
this device we find that the energy ratigynfor the transformed upper current region is 0.58.

2.) Low Current Nominal Regionor the remaining low current nominal portiorg th
peak current is nowyhskor 0.8A, and the new low current fall time is auiginal fall time
minus fask. From this and either the low current region enengg current match point, we
calculate the time shifted dynamic inductance patars/\o_ and k. (In general, the initial
series resistance is increased by a factor of jpktio scale for the revised peak currepti If
there is appreciable voltage variation, low curneities of \,: and Vdgamp may also be
needed.) For this device, the energy ratig, for the low current region is 0.66.
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3.) Bilinear Saturation Model:We have transformed the single curve with anggner
ratio of 0.35 into two curves, with ratios greatesn 0.5, which are more accurately simulated
with our linear model. We now form the partition&ge point match, Bilinear Saturation Model
current, Ifiin(t), to simulate our original data. For time I&san f.sx the model for our original
current data is\(Aou, Ky, thask t) + Inaskand for time greater thapastkthe model is
ian(AoL, ki, tfall - thask t - thasy. TheAoy ia(t) plot captures the fully saturated region. The
results of this procedure for the skip shift soldrend the A/C clutch relay of Figures 5 and 6,
respectively, are shown in Figures 7 and 8. A9tbts reveal, linear current partitioning of the
data gives an accurate representation of the atigonlinear/complex saturation current data.

VII. CONCLUSIONS

Simple electromechanical actuators display a hightyrated, linear, dynamic
inductance behavior. Based upon the empiricalrobtien that/\(i) can be approximated by
No — Kk i, a compact analytic solution for linear dymc saturation was derived. The
characterization parameté, can be extracted from a three-point match, usitinger a single
central current point or the fall energy, plus tilve fall current endpoints. Within the linear
domain, in general, half of the high current maqatshts are within about two percent of the
current data. A Bilinear Saturation Model can bedu®r more accurate or complex simulations.



NOMENCLATURE

Em Energy dissipated in the voltage clamp measureahgltine fall time.
Eim Energy calculated by integral of Vz £(I\om, KO, trar, t) Over k.

[peak Ipk Peak fall current. Value of current at MOSFET tdfrisigger point).

Im Fall current data point,@ty,used to calculatdo,. See Appendix.

I mask Current level subtracted from high current dataskriaw current region.
IAH High current region solution to data with a magkturrent subtracted.
iAL Low current region solution for data startingreg masking current.

k Slope of the dynamic inductance with fall curré3ge Appendix.

Kem Value of k calculated fromog,. See Appendix.

Kim Value of k calculated fromoi,. See Appendix.

Lipk, Ripk Bi-effective inductance and resistance of the faliyurated region.
Ltail, Rl Bi-effective inductance and resistance of the lowrent tail region.

n Exponent for power function (Ipk{1-(t#)"}) match to fall current.

Falloff of the power function (di/dt) neait normalized to Ipeak.

Energy ratio: (Peak EnergyE 1)_1. See Appendix.
NEm Value of n calculated from “Effective” value. See Appendix.
Nim Value of n calculated from a current data poik@®@l,. See Appendix.
Rseries RS Coll plus FET clamp resistance. If Rg&s negligible ~ \4.¢/1pk.

FET clamp resistancedVds;amd0lds, is normally a fraction of Relg

and can generally be ignored.

tran, tf Measured fall time. Time interval between currdripk and zero.
tm Fall time data pointf@I, used to calculatAoy,. See Appendix.
tmask Time corresponding to current levehdi Fall time for hask

tfall encoded The measured value gfjtcan be extracted fromo and k. Appendix.
Vgas VD Average supply voltage.
Vdsgamp VZ  The clamp voltage. If not constant, energy-averag@ahp voltage.

N Dynamic inductance. Defined ashg,/di. Measured as emf/di/dt.
Nipk Dynamic inductance at peak current. Calculatefias k Ipk.

Ao Dynamic inductance intercept at zero current. Useatharacterizé.
NOgnm Ao calculated by matching fall energyy,.ESee Appendix.

NOEm-tm Approximation forAogm calculated from\oy,. See Appendix.

NOtm Mo calculated by matching fall current a@In. See Appendix.
NOgpic Value ofAo if saturation ~ 100%, i.e/\p= 0. See Appendix.

Note: The Mathcad files and data used in the developauash preparation of the paper are
available from the author upon request.



Appendix

Shorten variables names: Vb = Vg Vz = Vdgamp 1Pk = Ipeak

Effective conventional inductance given measured engy, Em

-1
Em DR32 Vb
L ottoctive. = 0 Ipk ORs+ (Vz - Vb) Oin| ——————— (5)
effective Vz Vz +Ipk OR - Vb

Exponent n for Energy or Im@tm match
Em

Ngm=—""" (6)

Ipk OVz Otf — Em

_ Inh—ﬁ)

Nim il
N

(7)

General expression for slope, k in terms oAo and tf
20{AoOipk - (Vz—Vb + Rslpka-1 ) f )

k(Ao,tf) = ntl 8
ok (8)
Tfall is encoded intoAo and k
20Ao -k Olpk ) Olpk
tfa"encodec(/\o) = ( P ) P (9)

2 Db/z—Vb+ RsOIpk %)

Rs = Rseries

Find Lo given a central match point Im@time=tm, clanp variables and fall time

__ 1yt ptf) + (1t )

Mo tm(l m’t m’tf) - Ipk(D m[@pk - m) (10)

oIyt ) := (V2= V) [E(tf ~ tyr) DK - f mmz} @D

n

b(lm,tm,tf) :=Htf - {2 - l[ﬁtt—:(nj }[ﬂm}upkz —tf mﬂg@

tf ﬁ”t
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