
Simple 1D Latitudinal Energy Balance Model
 http://leapcad.com/Climate_Analysis/1D_Zonal_Globall_Temperature-Energy_Balance_Model.xmcd

Energy flows into Earth through radiation from the Sun and out of Earth by reflection and radiation.

There are latitudinal variations. The flow of energy into Earth and the flow of energy out of Earth

must be equal if Earth is to maintain a stable temperature. 

H0 is the extraterrestrial solar flux (w/m2). In the zonal model, we need to be able to calculate the

total energy received from the sun per unit time. This is given by πR2 H0. The average

extraterrestrial solar flux over the entire surface can by calculated by H0/4.  

 Anthropogenic Global Warming Simulation:

The long wavelength flux to space, H+(T,c ) can be approximated by a first order expansion in the

surface air temperature and the logarithm of the atmospheric carbon dioxide concentration, c.

                                       H+(T,c) = Aco2 + Bco2 T - Cco2 ln(c/co)

We will assume that Aco2, Bco2, and Cco2 ln(co/co) are a component parts of our general model

for this point in time.  We will then explicitly separate out the Cco2 ln(c/co) contribution. 

There are a number of estimates for Cco2. The preindustrial atmospheric CO2 concentration is 280

ppm.  Today's value of 370 ppm

 Data Constants:

SC: Solar Constant (W/m2),  

A & B: Long Wave Radiation Heat Loss (Greenhouse)  A (W/m2),  B(W/m2/C)    Rloss = A + B x T 

C: Transport Coefficient (Conductivity between zones) C(W/m2/C)

Tcrit: Temperature at which land becomes covered with snow and/or water turns to ice

Aice; Ice Albedo,  SunWt: Annual mean radiation at latitude W/m2 

CO2 Global Warming Forcing = 5.7 W/m2

SC 1370:= B 2.17:= C 3.87:= CO2 5.7:= A 204 CO2−:= Tcrit 10−:=

SCfrac 0.9:= αice 0.6:= αland 0.295:= co 200:= cx 400:=

max_tilt 23.5:= days_in_year 365:= hours_in_day 24:= zonal_degrees 360:=

Pole_Temp_Diff_Dat 42.3−:= Glob_Avg_Temp 14.9:= Cgw CO2 ln
400

co









⋅:=

 Read NCEP surface air temperature (annual, zonal mean, deg C) and Sim Temp

TempDat READPRN "NCEP_air_zonal.dat"( ):= rows TempDat( ) 72=

TempSimToday READPRN "FinalTempSim.txt"( ):=

 Read Albedo Data: Earth Radiation Budget Experiment (ERBE) 1986 - 1989

AlbedoLat READPRN "Avg_Albedo_Latitude.txt"( ):= rows AlbedoLat( ) 72=

lats 36:= lat 1 lats..:= Init_T
lats

100:= LatA AlbedoLat
1〈 〉

:= Albedo AlbedoLat
2〈 〉

:=

zonal_width
90

lats
:= ZoneLat

lat

zonal_width

2
lats lat−( ) zonal_width⋅+:=

delta_rad
π

lats
:= zones

lat

zonal_width

2
lat 1−( ) zonal_width⋅+:=

reverse V( ) R rows V( )←

Rev
r

V
R 1+ r−

←

r 1 R..∈for

Rev

:=

lats_rad
lats π⋅

180
:= max_steps 100:=

 Fraction of the surface of sphere in each latitude zone

lats_frac sin lats_rad delta_rad+( ) sin lats_rad delta_rad−( )−( ):=
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 Daily rotation of earth reduces solar constant by distributing sun energy along a zonal band

total_solar total_solar 0←

noon_angle zonal_degrees
hour

hours_in_day
⋅←

sun_angle longitude noon_angle−←

MaxAngle if cos
π sun_angle⋅

180









0> cos
π sun_angle⋅

180









, 0, 








←

total_solar total_solar SC MaxAngle⋅+←

longitude 1 zonal_degrees..∈for

hour 1 hours_in_day..∈for

total_solar

:=

FlipAug V( ) R rows V( )←

VF
r

V
r

←

VF
R r+

V
R 1+ r−

←

r 1 R..∈for

VF

:=

solar_constant
total_solar

hours_in_day zonal_degrees⋅
:=

 Annual Insolation: Accumulate normalized insolation through a year

Insolation
lat

0:= Init_T FlipAug Init_T( ):=

insolation I Insolation←

tilt max_tilt cos 2
π day⋅

days_in_year
⋅









⋅←

zenith if zones
j

tilt+ 90< zones
j

tilt+, 90, ( )←

I
j

I
j

cos zenith
π

180
⋅









+←

j 1 lats..∈for

day 1 days_in_year..∈for

solar_constant reverse I( )⋅

days_in_year

:=

latsS 2 lats⋅:= latS 1 latsS..:= insolation FlipAug insolation( ):= ZoneLat FlipAug ZoneLat( ):=

SumCos cos ZoneLat
π

180
⋅







∑:= T_Cos

latS
Init_T

latS
cos ZoneLat

latS

π

180
⋅









⋅:=

Mean_T T_Cos∑
1

SumCos
⋅:=

Tempinit
insolation 1 Albedo−( )⋅ C Mean_T⋅+ A− Cgw−[ ]

B C+

→

:=

Mean_T 4.362= mean Tempinit( ) 5.462= Step
latS

0:=

tol_temp_diff 1:=
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Final_TA Albedo( ) step 2←

max_temp_diff 100←

Temp Tempinit←

step step 1+←

Temp_old Temp←

Mean_T
step

Temp cos ZoneLat
π

180
⋅









⋅








→

∑
1

SumCos
⋅←

Temp insolation 1 Albedo−( )⋅ C Mean_T
step

⋅+ A− Cgw− 
→ 1

B C+( )
⋅←

Albedo
lat

αice← Temp
lat

Tcrit< Albedo
lat

αland<∧if

Albedo
lat

αland← Temp
lat

Tcrit> Albedo
lat

αland<∧if

Step
lat

step←

lat 1 latsS..∈for

max_temp_diff max Temp_old Temp−( )
→ ←

step max_steps< max_temp_diff tol_temp_diff>∧while

Final_T

insolation 1 Albedo−( )⋅ C Mean_T
step

⋅+ A− Cgw−

B C+

→

←

Final_T augment Final_T Albedo, Step, ( )←

:=

FTA Final_TA Albedo( ):= FTA
1 3, 

12= Final_Temp FTA
1〈 〉

:=

mean Final_Temp( ) 5.134= mean TempDat( ) 3.089= ALBEDO FTA
2〈 〉

:=

NPole_Eq_Diff Final_Temp
1

Final_Temp
lats

−:= NPole_Eq_Diff 44.562−=

Lattitude Cape Coral, FL: 26° 33' 45" N. Avg Temp 23.5 C Final_Temp
26

18.478=

 North's 1-D Effusive EBM Analytic Model (Magenta Plots)

To is the planetary, globally averaged temperature, T2 is 2/3 of the Temp difference from the

poles to equator, Tpe.  The ice sheet edge (T = -10C) is above 73.74o, with ice albedo, αice.

To 14.9:= Tpe 42.3−:= T2
2

3
Tpe⋅:= xs 0.96:=

αo 0.303:= α2 0.0779:= α θ( ) if θ 73.7< αo α2 Leg 2 sin
θ π⋅

180









, 








⋅+, αice, 








:=

TNorth θ( ) To T2 Leg 2 sin
θ π⋅

180









, 








⋅+:= TNorth 90( ) 13.3−= TNorth 73.7( ) 9.968−=
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WRITEPRN "FinalTempSim.txt"( ) Final_Temp:=

 Climate Sensitivity: Anthrotropic Global Warming from Doubled CO2 Concentration

AGW mean Final_Temp TempSimToday−( ):= AGW 1.444=

Taking the central value of the likely range of climate sensitivities of 3 oC (the temperature rise

from doubling atmospheric CO2) the equilibrium temperature rise is expected to be:

Temp rise = ln([CO2]2/[CO2]1)*3/ln2

where [CO2]1 is the starting [CO2] level, [CO2]2 is the end [CO2] level, 3 is the climate

sensitivity and ln2 refers to the doubling.

∆TCO2 CO2( ) ln
CO2

co









3

ln 2( )
⋅:=

H2O and CO2 have the same number of IR active vibrations - 3. An absorption band at a given

frequency is due to a specific vibration. For example the 650cm-1 CO2 absorption is due to the

(doubly degenerate) bending mode. So more asymmetry in a molecule does not mean more

absorption at a given wavelength. It usually means more wavelengths at which it absorbs.

However asymmetry will complicate the rotational-fine structure of a particular IR absorption,

however H2O's rotational fine structure will be quite dispersed because of its light mass (18

compared to CO2's 44) 

 Radiative Forcing

The radiative forcing for CO2 (this is the forcing at the tropopause, not the surface, as described

in Myhre et al 1998 and later papers) is

k 5.35
W

m
2

⋅:= FCO2 CO2( ) k ln
CO2

co









:= FCO2 2 co⋅( ) 3.708
kg

s
3

=

Where the constant k (derived from line-by-line radiative transfer codes) C0 are the final and

initial CO2 concentrations.

Climate sensitivity is the temperature response of the system per unit forcing. In other words, a

high climate sensitivity means that it is very easy to change the global mean temperature, while

a very low sensitivity would require an enormous forcing to get that same change. In the easiest

case, we’ll consider what happens when you only increase some forcing (say double CO2) and

allow the outgoing radiation to increase (according to the Stefan-Boltzmann law) to re-establish a

new radiative equilibrium. Here, nothing else changes with the climate state (no cloud cover

changes, no ice melts, etc) except for our forcing. This is the so-called Planck response. 
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 In a simple way, we can assume that the surface and emission temperature are linearly

related, in which case the Planck-only feedback response can be computed as the inverse of

the derivative of Stefan-Boltzmann with respect to temperature,

\lambda_{planck} = \left[\frac {\partial\left(\sigma T^{4}_{eff}\right)}{\partial T_{s}}\right]^{-1}

Which equals,

(4 \sigma T^{3}_{eff})^{-1} = 0.27 K(W m^{-2})^{-1}

The temperature response can then be linearly related to a forcing

\Delta T = \lambda F

To compute a radiative forcing for an increase in solar irradiance, we do

F_{solar} = S_{0} * (percent change/100)*(1/4)*(0.7)

where the 1/4 and 0.7 factor account for the geometry and albedo of the Earth, respectively.

Depending on how radiative forcing is defined, this number can often be reduced further to

account for ozone absorption of UV or other effects, but in general the forcing due to a realistic

change in solar increase is very small. It follows that it would take about a 22 W/m2 change

in solar irradiance to produce a 1 K change in global temperature. This is actually a

very stable climate. This also demonstrates the intellectual bankruptcy of those who claim that

the solar trend over the last half century (which has pretty much been a flat-line when you

remove the 11-year oscillatory signal) is responsible for most of the observed late 20th century

warming, and simultaneously argue for a low sensitivity.
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